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Abstract 

This paper discusses a new fixed-order (sub-optimal) 
H2/£x control synthesis method for continuous linear 
systems. This new optimization method allows the 
control system designer to combine H2 and L\ norms 
of dissimilar transfer functions into a single multi- 
objective optimization problem. Two numerical ap- 
proaches of approximating the Linorm and analyt- 
ical gradients for the H2 and Ly problems are pre- 
sented. The H2/L1 optimization method is demon- 
strated on a realistic aircraft control problem. 

1    Introduction 

In the past few years, much attention has been paid 
to the problem of solving multi-objective optimal 
control problems. The main impetus for this type 
of research is the simple fact that a real system 
is never limited to a single class of inputs or out- 
puts. For example, it is not uncommon in many 
aircraft problems to have some inputs well modeled 
as white Gaussian noise, some as bounded energy 
and some as bounded magnitude signals. While dif- 
ferent control methodologies exist to handle each of 
these classes of inputs separately, multi-objective op- 
timization methods allow the designer to optimally 
handle the trade-offs associated with several classes 
of inputs at one time. 

Much of the early work in multi-objective optimal 
control has focused on F2/i?oo optimization meth- 
ods. Many of these approaches are restricted to 
special cases  such  as one input/one output,  one 
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input/two outputs and two inputs/one output.1-7 

The general i?2/-ffoo two exogenous inputs two con- 
trolled outputs problem was first solved by Khar- 
gonekar and Rotea7 using full state feedback. Since 
the optimal solution to the problem is in general 
non-rational,8,9 several researchers have recently de- 
veloped sub-optimal solution methods. Walker and 
Ridgely10 developed a numerical algorithm to solve 
the general fixed order H-z/H^ problem with out- 
put feedback. Their approach also allows for both 
singular and multiple H^ constraints.11 Ly and 
Schömig12 solve the identical problem using gradient 
based parameter optimization methods. 

The L\ optimization problem was first proposed by 
Vidyasagar13 to optimally reject persistent bounded 
magnitude inputs. Dahleh and Pearson14 later de- 
veloped exact and approximate methods of solving 
the general single input, single output L\ problem. 
Unfortunately, both approaches lead to irrational 
controllers. A few researchers have incorporated a 
discrete version of the L\ problem (denoted as ly 
optimization) into discrete multi-objective optimiza- 
tion methods,15"17 but until now, no one has in- 
corporated the L\ problem into a continuous time, 
multi-objective problem. 

The purpose of this paper is to present a numerical 
approach to the continuous time, fixed-order H2/L1 
optimization problem. The remainder of this paper 
is organized as follows. Section 2 describes the com- 
plete set-up of the fixed-order H2/L\ optimization 
problem. In Section 3, analytic gradients for the 
H2 problem are presented. Two numerical meth- 
ods of finding approximate solutions to the L\ prob- 
lem are presented in Section 4 and analytic gradients 
for the Lx problem are discussed in Section 5. Sec- 
tion 6 covers computer implementation issues and 
the method is applied to an AFTI F-16 longitudinal 
control problem in Section 7. Finally, Section 8 sum- 



 *■ 

P(a) — 

K(s) «  

z 
m 

Figure 1: Mixed H2/Li optimization problem 

marizes the paper and presents some conclusions. 

2    The Mixed H2/Li Problem 

The mixed H2/Li design problem is depicted in Fig- 
ure 1. In general, it is assumed that there is no 
relationship between w and r, or z and m. 

The goal of mixed H2/Li optimization is to find a 
stabilizing controller which satisfies 

inf .    \\T„ 
if stabilizing 

where 

T     — -1 zw  — 

|2   subject to   Tmr||i < v    (2.1) 

(2.2) \  Ä2 Bw   1 
[ cz Dzw 

\Ai Br 

L"m "mr 
(2.3) 

and v is a user specified constraint level on the L\ 
norm of Tmr. 

The state-space of P is found by augmenting the 
stable weights of the H2 problem and the L\ prob- 
lem to the original system. Typically, the orders of 
the individual H2 and L\ problems are less than the 
order of P. The state-space equations of the H2 and 
L\ problems can be written as 

x2    =    A2x2 + Bww + Bu2u 

z    =    Czx2 + Dzw w + Dzu u 

y   =    Cy2x2 + Dyww + Dyuu (2.4) 

x\    =   Aixi + Brr + Bu\u 

m    -    Cmxi + Dmrr + Dmuu 

y    =    Cyixi + Dyrr + Dyuu (2.5) 

where x2 is the state'vector for the underlying H2 

problem, and x\ is the state vector of the underly- 
ing L\ problem. The following assumptions are now 
made on the state-space elements in Equation 2.4 
and Equation 2.5. 

1. (^2,5^2) stabilizable, (Cy2,A2) detectable 

2. (Ai,Bui) stabilizable, (Cyi,Ai) detectable 

3. Dzw = 0 

4. DT
ZUDZU full rank, DywDyW full rank 

5. 

6. 

A2 - jwl   Bu2 

^z Dzu 

A2 - JLuI    B, 
Cy2 D. yw 

has full column rank for all 

has full row rank for all w 

7.    D: yu 

Assumptions 1-2 ensure that stabilizing controllers 
for the H2 and Li problems can be found. Assump- 
tion 3 is necessary for Tzw to have a finite two-norm 
and Assumption 4 keeps the problem from being sin- 
gular. Assumptions 5-6 are required for the exis- 
tence of stabilizing solutions to the algebraic Ricatti 
equations used in the H2 solution. Finally, Assump- 
tion 7 is not required but it simplifies the notation 
in the following development. 

The controller state-space equations are 

xk    =    Akxk + Bky 

u    =    Ckxk+Dky (2-1 

Using Equation 2.4 and Equation 2.6, the closed- 
loop state-space equations for Tzw can be written 
as 

x2 

z 

(A2 + Bu2DkCy2)x2 + (BU2Ck)xk 

+(BW + Bu2DkDyw)w 

[BkCy2)x2 + (Ak)xk + (BkDyw)w 

(Cz + DzuDkCy2)x2 + (DzuCk)xk 

+(DzuDkDyw)w (2.7) 

Notice that DzuDkDyw in Equation 2.7 must be zero 
to ensure the resulting two-norm of Tzw is finite. 
This fact and Assumption 4 imply that Dk must be 
zero. Therefore, a strictly proper controller, K, can 
be assumed without any loss of generality. With this 



additional assumption, the closed state-space matri- 
ces in Equations 2.2-2.3 can be written as 

Ä2 

Bu 
Bw 

Hk-LJyw 
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BkGy2 
BuiCk 

Ak     j 

Ax 
BkCyl 

BuiCk 
Ak 

Br = 
BkDyr 
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The following definitions are used to discuss the so- 
lution to the mixed H2/Li problem: 

a 

v 

K2opi 

Kiopt 

ä 

v 

inf       ||TZW||2 
iladmissable 

ivadmissable 

= the unique K that makes ||TiU,||2 = a 

= a K that makes ||Tmr||i = y_ 

= \\TZW\\2 when K = Klopi 

= \\Tmr\\i when K = K2opt 

Kmix    := the global minimum solution to the 

H2/L1 problem for some v 

a    := ||Tau,||2 when K = Kmix 

v    ■= ||Tmr||i when K = Kmix 

Admissible controllers must be stabilizing and have 
a fixed, user-specified order. 

A solution to the H2jL\ problem must satisfy the 
Kuhn-Tucker necessary conditions: 

1- Kmix must be feasible, i.e. it must stabilize Tzw 

and Tmr 

2. VHT^IIa + AiV||Tror||i = 0,   Ai > 0 

3. A1(||Tmr||i-i/) = 0,  Ai>0 

where Ai is a Lagrange multiplier associated with the 
one-norm constraint. Condition 1 is simply a feasi- 
bility condition. Condition 2 states that the gradi- 
ent of the objective must be balanced by the scaled 
gradient of the constraint. The last condition states 
that if the constraint is not satisfied exactly, then 
Ai must be zero. Conditions 2 and 3 together imply 
that an optimal solution (if it exists) must lie on the 
constraint boundary when v_ < v < V.   If v > V, 

then the unique solution is K.2opt. By definition, v 
can not be chosen less than y_. When y_ < v < V, a 
is a monotonically decreasing function of v. 

A sequential quadratic programming (SQP) algo- 
rithm is used to solve the H2/Li problem numer- 
ically. The objective, /, and the constraints, g, are 
given by 

/(c)    -    Q2\\TZW\\\ 

</i(e)    <    Ci(\\Tmr\\ - p) 

9s{c)    <    C [ ma,Xi(Re(\i(A2))) (2i 

where c is a vectorized compensator, £'s are scal" 
ing parameters, and A,(-) is the ith eigenvalue of (•). 
The stability constraint, gs, is added to the prob- 
lem to keep the SQP algorithm from getting lost in 
the unstable region. While this constraint should 
be posed as a strict inequality constraint, equality 
must also be allowed to incorporate it into the SQP 
algorithm. Modal form is assumed for the controller, 
K, to minimize the number of design variables in c. 
While this approach disallows repeated eigenvalues 
in the controller, it has been shown to be sufficient 
in practice. 

The SQP algorithm requires gradients for the objec- 
tive function and each of the constraints. Analytical 
gradients for the objective function are derived in 
the next section. 

3    Gradients of the Two-Norm 

The two-norm squared of Tzw can be calculated by 

\\TZW HI =tr[QCfCz] (3.1) 

where Q is the positive semidefinite solution to the 
Lyapunov equation 

A2Q + QAl + BwBl = 0 (3.2) 

If the constraint on Q in Equation 3.2 is written in 
an equivalent form 

tr[(A2Q + QA? + BwBl)X]=0 for all X (3.3) 

then 

\\Tzw\\l     =     tr[QCfCz]+   tr[{A2Q + QA^ + ßwßl)X} 
for  all X. (3.4) 

To simplify the notation, let J equal the two-norm 
squared of Tzw. Notice from Equation 3.4 that J is 
an explicit function of the design variables and the 



matrices, X and Q. However, the partial derivative 
of J with respect to X is simply the left side of 
Equation 3.2 and, therefore, it is always equal to 
zero. Further, it can be shown that 

dJ_ 

dQ 
= AT

2X + XA2 + CjCz = 0 (3.5) 

which is a Lyapunov equation. Since X is arbitrary, 
let X be the positive semidefmite solution to the 
Lyapunov equation 

A\X + XA2 + etc, = 0 (3.6) 

This choice of X is guaranteed to exist since Av must 
be stable.   With this choice, |i = 0 and the only 

remaining derivatives to be calculated are 4T~ , 44-, 0 <JAk '  oBk ' 
and^. 

If Q is given by 

Q = 

and X is given by 

X = 

Qn 
Q12 

Q12 

Q22 
(3.7) 

.X11    X 

X-X2      X; 
(3.8) 

then these derivatives are 
dJ 

dJ 

dBk 

dJ 

9Ck 

—     2X12Qi2 + 2X22Q22 

=       2X12QUCy2+2X22Ql2Cy2 + 

2X12BwDyw + 2X2BkDywDyw 

=     2Bu2XnQi2 + 2Bu2Xi2Q22 + 

2D?UCZQ12 + DT
zuDzuGkQ22 (3.9) 

The complete method for finding the partial deriva- 
tives of J with respect to the vectorized compen- 
sator, c, is as follows 

1. Solve the Lyapunov equations in Equation 3.2 
and Equation 3.6 for Q and X respectively. 

2. Compute the partial derivatives in Equa- 
tion 3.9. 

3. Rearrage Equation 3.9 to express the gradient 
with respect to the vector of design variables, c, 
as a vector 

d£ 
dc 

dJ 
SAk >:• ■( 

dJ 
BAk 1 nk 

T 

aj 
8Bk >f- ■( 

dJ 
SBk )T  1 / Uy 

T 

3J 
ack 

):■ 
■( 

8J 
ack 1 nk 

T 

(3.10) 

where the individual vectors in parentheses are the 
columns of the partial derivative matrices, nk is the 
order of the compensator, and ny is the number of 
measurements. The next section discusses two nu- 
merical methods of approximating the L\ norm of 
T 

4    Calculating the L\ Norm 

The L\ norm of a continuous, SISO system is given 
by 

\\T, mr   1 
Jo 

CmeAltBr I dt+ I £>„ (4.1) 

If A\ is stable, then eAlt approaches zero as t ap- 
proaches infinity, and Equation 4.1 can be approx- 
imated by truncating the integral at some point in 
time, tff, which can be computed from the eigenval- 
ues of Ai. The remaining question is how best to 
evaluate the truncated integral. 

The first approach to this problem is to eliminate 
the absolute value sign inside the integral by deter- 
mining where the impulse response is positive and 
negative. This can be done by discretizing the con- 
tinuous system with a zero order hold (ZOH), and 
finding the pulse response of the resulting discrete 
system. Since the ZOH transformation preserves 
the values of the continuous impulse response at the 
sample points, the discrete pulse response can be 
used to find approximate locations where the con- 
tinuous impulse response is zero. These approximate 
locations are then refined to any degree of accuracy 
by using a nonlinear root-solver on the continuous 
function, CmeAltBr. Once the zero locations of the 
impulse response are known, the absolute value sign 
can be removed by breaking the integral in Equa- 
tion 4.1 into a series of integrations. Further, if A\ 
is invertible (i.e. A\ has no zero eigenvalues), then 

CrneA^tBrdt = CmA~l[eA^ - eA^ - 2l\BT     (4.2) 

Thus, each integral in the series can be determined 
exactly. When A\ does have eigenvalues at the ori- 
gin, the system is not stable and the one-norm is 
infinite. 

The key to this method rests on determining the 
zero locations of the continuous impulse response. If 
zero locations are missed in the discretization step 
due to high frequency dynamics, then the one-norm 



will be inaccurate. In addition, most nonlinear root- 
solvers are only capable of finding the root closest to 
a given initial guess. This implies that the approx- 
imate root locations must be fairly precise, i.e. the 
discretization sample period must be fairly small. 
Using a small sample period to estimate the impulse 
response of systems with fast and slow dynamics can 
be expensive in terms of computer time. These is- 
sues make the above method impractical to use in a 
computer algorithm which must handle a wide range 
of problems. However, this method does offer an al- 
ternative way to calculate the one-norm for specific 
examples, and can be used to check another method. 

The second approach to approximating the trun- 
cated integral is more robust but less accurate. In 
this method, the continuous system is discretized 
with a ZOH transformation using a small sample pe- 
riod. The truncated integral is then approximated 
with a trapezoidal integration of the discrete pulse 
response. As the sample period decreases, the ap- 
proximation improves. HH2/L1 optimization is per- 
formed near L\ optimal, where t^ is small, this 
method works well at approximating the one-norm 
of a system without requiring an unreasonable num- 
ber of samples. Starting points relatively near L\ 
optimal can be found by using any fixed-order H^ 
optimization method which allows the structure of 
the controller to be set by the user.10'12 

The L\ norm for MIMO systems is calculated from 
the maximum row sum of SISO transfer function 
norms. However, discontinuous gradients can occur 
when the maximum row sum occurs over more than 
one row. To counter this problem, each row sum is 
constrained as a separate Multiple Input Single Out- 
put (MISO) transfer function. This effectively adds 
more constraints to the H2/L1 optimization-prob- 
lem, but most of the additional constraints are not 
active at any specific design point. If an optimiza- 
tion algorithm is used which only calls for gradients 
of the active constraints, then these additional con- 
straints have little impact on the overall performance 
of the H2/L1 algorithm. The next section discusses 
how to calculate the gradients associated with the 
L\ norm. 

This section derives the gradients of the one-norm 
with respect to the design variables in the matrices 
Ak, 5fc, and Ck ■ Since all of these matrices appear 

in A\, the first problem considered is how to com- 
pute the partial of eAlt with respect to any element 
of Ai. This is the most difficult issue in calculating 
the gradients of the one-norm with respect to the de- 
sign variables. Contributions to the one-norm gradi- 
ents from the other closed-loop state-space matrices, 
which are considerably simpler to find, are discussed 
thereafter. In solving the first problem, it will also 
become clear how to calculate the gradient of the 
added stability constraint in Equation   2.8. 

If Ai is a non-defective matrix (Ai can be diagonal- 
ized), then the partial of eAlt with respect to any 
element of Ai is given by 

da; 7T- [ ReAtR~1 } Odij L J 

dR 

(5.1) 

„At 1 

9 
R-1 +R 

'3 da; 
-R-1 +Re' tdR~ 

da; 

where R is the right eigenvector matrix of Ai and 
A is a diagonal matrix consisting of the eigenvalues 
of Ai. The partial of eAt with respect to asj can be 
computed easily from 

de/l - V dßAt 9Xi 

da <9Aj dan 
(5.2) 

provided that the partial derivative of each eigen- 
value is known with respect to a^-. Likewise, the 
partial derivative of R_1 with respect to a,-j can be 
easily computed from 

dR' 

da; dan 
(5.3) 

provided that the partial derivative of the right 
eigenvector matrix with respect to aij is known. 

The partials of an eigenvalue and eigenvector with 
respect to a,j can be computed from the standard 
eigenvalue problem if the ni eigenvalues of Ai are 
distinct. The derivations of these two derivatives 
involve both the left and right eigenvectors of Ai, 
and are described in detail by Nelson.18 Letting 

(•)' = gf~> the solutions are given by 

(5.4) Aj-     —    h^ JK^rli 

R'i   =   £ftÄ*+Ä-Äi = V5 + ßiJ,-   (5-5) 
fc=i 

5    Gradients of the One-Norm     where 

ßk 
-kfc [ RJK — A[Rj ] 

Afc — A,- 
i^k 

ßi = Re ( RfMVi ) - ^RfM'Ri 

(5.6) 

(5.7) 



RfMRi = 1 (5.8) 

The notation, (-)H, denotes the complex conjugate 
transpose of (•), and L is the left eigenvector matrix. 
Ri and Li refer to the ith eigenvector of R and L, re- 
spectively. Note that A[ is simply anixni matrix of 
zeros with a one in the (i,j) element. The real part 
of Equation 5.4 provides a method of computing the 
gradients of the stability constraint in Equation 2.8 
if Aj is the maximum eigenvalue of A\. 

The partial of eAlt with respect to o,-j can be com- 
pletely determined from Equations 5.2-5.8. Using 
this information, the partial derivative of the one- 
norm with respect to Ai can be found element-by- 
element from 

d\\T, 
dA 

II /*°° r)   Al* 
HIÜI=/      Sgn(CmeA^Br)Cm4 Brdt 
Uj J0 

dan 
(5.9) 

where sgn(-) is 1, —1, or 0 depending on the sign of 
(•). The partial derivatives with respect to the other 
closed-loop matrices are given by 

9||2mr||l 
dBr 

8||Tmr|ll 
dCm 

31|rmr||l 

dVmr 

POD r 

/ sgn(CmeA^Br) (e^i*)TC£ 
Jo '- 
t°° r 
/ sgr^Cme^Br) (ßje^)7 

Jo '■ 

sgn ( Vmr ) 

dt 

dt 

(5.10) 

From these expressions, the partials of the one-norm 
with respect to A/,, Bk, and Ck can be expressed as 

9|lTmr|ji 

9||Tmr|[l 

eiiT, mr 111 (5.11) 

p=l ?=1 

d\\T„ 

p=l  q=l 

"1      nk 

dCk 
EE^,[^]p,„i+,+ 
p=l  q=\ 

nm    nk 

p=l  q=l 

The partial of the one-norm of Tmr with respect to 
c can be formed from the columns of matrices in 
Equation 5.11 as described in Section 3. 

The integrals in Equations 5.9-5.10 are approxi- 
mated in the same manner as the integral in the 
one-norm calculation. The upper limit of integra- 
tion is changed to tpj, and trapezoidal integration is 
performed over discrete points from the continuous 
function. The same discretization period is used for 
the norm calculation and the gradients, which allows 

the sign factor required in Equations 5.9-5.10 to be 
computed from the data gathered in evaluating the 
one-norm. 

As mentioned in the previous section, separate 
MISO gradients are calculated for each row of a 
MIMO system. This ensures that continuous gradi- 
ent information is available regardless of where the 
maximum row sum occurs. 

Recall that development of R' and A' require that 
the eigenvalues of Ai be distinct. Clearly this con- 
dition can be violated while performing H2/L1 op- 
timization. The current algorithm switches to fi- 
nite difference calculations for gradient information 
if this occurs. Research is still being conducted to 
develop ways to handle an Ai matrix with repeated 
eigenvalues. 

6    Computer Implementation 

The H2/L1 optimization problem was implemented 
using the MATLAB™ SQP routine, constr.m. Sep- 
arate subroutines for each norm, constraint and gra- 
dient calculation were called from this algorithm. 
Unfortunately, this routine requires all gradient in- 
formation regardless of whether or not a constraint 
is active. FORTRAN™ shells can be written to al- 
low the MATLAB™ subroutines to interface with 
IMSL™ optimization routines, which eliminate this 
problem. 

The author's algorithms were also recently inte- 
grated into a complete MATLAB™ Toolbox for 
fixed-order, mixed-norm control synthesis.19 This 
toolbox (available by anonymous ftp) allows the de- 
signer to find a compensator which minimizes the 
H2 norm of a transfer function while constraining 
any combination of Hca and/or L\ [t\) norms of 
possibly dissimilar transfer functions to be below 
specified constraint levels. The toolbox also fea- 
tures a new MATLAB™ SQP routine based on 
the FORTRAN™ routine NLPQL written by Schit- 
tkowski.20 

7    H2/L1 Design Example 

A longitudinal controller design for the AFTI F-16 
in Figure 2 is used to demonstrate the H2/L1 opti- 
mization method. The aircraft plant consists of a 4 
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Figure 2: F-16 simulation diagram 
Figure 3: H2 diagram 

state linear model of the aircraft's longitudinal dy- 
namics (Gp), a first order actuator (Ga) and a first 
order Pade approximation of a 0.05 second time de- 
lay (Gt)- Ap, Bp, Cp and Dp represent the state- 
space elements of Gp. For simulation purposes, the 
disturbances, w\ and w2, are added to simulate wind 
gusts and measurement noise, respectively. Gw is a 
Von Karmen wind model and Y is used to allow wind 
gusts to enter the aircraft plant as an angle-of attack 
perturbation. Gm is a high-pass filter used to better 
model sensor noise. Detailed descriptions of all the 
elements in Figure 2 can be found in the Appendix. 

The H2 problem, taken from an example by Luke,21 

is to find an internally stabilizing controller which 
minimizes the response of the normal acceleration 
and weighted control to the wind disturbances and 
measurement noise. A block diagram of the H2 

problem is shown in Figure 3. A, B and C refer 
to the state-space matrices of G = GaGpGt- The 
control weight, p, equals 10 and the state weight- 
ing matrix, H, equals the system C matrix. The 
wind disturbance, w\, is modeled as a white Gaus- 
sian noise (WGN) with 5.0e - 4 rad2-sec intensity, 
and T is the column of A corresponding to the angle- 
of-attack state, a. The measurement noise, w2, is 
modeled as a WGN with 1.6e — 5 g2-sec intensity. 
Weighted control power, z\, and the delayed normal 
acceleration, z2, are the controlled outputs. 

The L\ problem, depicted in Figure 4, is a weighted 
sensitivity minimization design. Ws = aHffioooi ^s 

the inverse of the desired sensitivity.  A plot of the 

ws 

->   t K  *• G 

Figure 4: L\ diagram 

Frequency (radians/second) 

Figure 5: Desired sensitvity 



Figure 6: H2/L1 solution curve 

Table 1: Soultion points 

point # a V 

1 3.23 3.40 
5 2.40 3.96 
9 2.07 4.36 
15 1.67 5.02 
21 1.50 5.66 
24 0.86 97,190 

Frequency (radians/second) 

Figure 7: Sensitivity 

desired sensitivity is shown in Figure 5. 

7.1     E2jLx Results 

A plot of the H2/L1 solution curve for a Qth order 
compensator is shown in Figure 6. Notice that the 
plot only depicts mixed solutions near L\ optimal. 
A complete solution curve would extend much fur- 
ther along the horizontal axis, and asymptotically 
approach the dashed line, labeled a. Values for sev- 
eral of the solution points, depicted as circles in Fig- 
ure 6, are given in Table 1. The points are numbered 
from left to right in Figure 6. Point number 24 repre- 
sents the Hz optimal solution, which is not depicted 
in Figure 6. The points in Table 1 are referred to as 
the design points for the remainder of this section. 

Plots of the sensitivity and complementary sensitiv- 
ity for the design points are shown in Figures 7 and 
8. In each plot, one curve is dramatically different 
than the others. This curve corresponds to design 
point 24, the H2 solution. 

Frequency (radians/second) 

Figure 8: Complementary sensitivity 

The vector gain margins (VGM) in dB and vector 



Table 2: Soultion points 

point #    VGM    VGM    VPM 
1 -7.77 5.42 34.4 
5 -10.3 5.42 40.7 
9 -9.12 6.10 37.9 
15 -7.88 8.02 35.1 
21 -7.50 8.11 35.3 
24 -7.82 8.80 37.1 

Frequency (radians/second) 

Figure 9: Open-loop GK 

phase margins22 (VPM) in degrees for the design 
points are shown in Table 2. Notice that the sta- 
bility margins do not consistently improve as v is 
decreased. However, the margins are acceptable at 
all of the design points. 

The open-loop GK plot is shown in Figure 9. The 
shaded area on the left side of Figure 9 represents 
a recommended performance and disturbance rejec- 
tion barrier. The shaded area on the right side 
of Figure 9 represents a recommended sensor noise 
and unmodeled dynamics barrier. Descriptions of 
both barriers were taken from Ridgely and Banda,23 

which also contains an excellent discussion of desired 
GK shapes. Notice that the mixed design points, all 
relatively near L\ optimal, miss the barrier on the 
left, but pass within the barrier on the right. If 
deemed necessary, a design which meets both barri- 
ers could be found by a mixed solution closer to H2 
optimal. 

The loop shapes from the design points imply that 
high frequency noise will be more prevalent than low 
frequency noise in system responses. Systems ob- 
tained from these design points should also track 
low frequency commands well. Figure 10 shows the 

Figure 10: Step responses without noise 

Figure 11: Step response with noise, design point 1 

F-16 responses, without noise, to a commanded \g 
(from trim) step input for the different designs. No- 
tice that the H2 solution tracks with a steady-state 
error while the mixed designs do not. Step responses 
with noise for design points 1, 9, 15 and 24 are shown 
in Figures 11-14, respectively. As expected, the sys- 
tems with lower values contain more high frequency 
noise than those closer to the H2 optimal design. 
The most important item to note from Figures 11- 
14 is that the tracking performance of the AFTI F-16 
can be greatly improved using mixed H2/L1 designs, 
with very little increase on the amount of noise in 
the system response. 

8    Conclusions 

This paper presented a newly developed numerical 



Figure 12: Step response with noise, design point 9 

Figure 13: Step response with noise, design point 15 

Figure 14: Step response with noise, design point 24 

approach to fixed-order (sub-optimal) H2/Li opti- 
mization for continuous systems. Two methods were 
developed to numerically approximate the L\ norm 
of a continuous system and analytical gradients of 
the L\ problem with respect to the state-space el- 
ements of the controller were derived. The H2/L1 
algorithm was applied to an AFTI F-16 longitudi- 
nal control problem which clearly demonstrated the 
benefits of mixing H2 and L\ optimization meth- 
ods. Additional research is needed to further refine 
the calculation the L\ norm. 

9    Appendix 

This section contains the state-space descriptions of 
the aircraft model shown in Figure 2. 

The four states in the longitudinal model, Gp are 
forward speed (u in ft/sec), angle of attack (a in 
radians, pitch angle (9 in radians), and pitch rate 
(q in radians/sec). The input to Gp is the stabila- 
tor deflection (Se in radians) and the output is the 
normal acceleration (nz in g's). Gp is given by 

-1.485e-2 
-8.000e - 5 

0.000e + 0 
-3.600e - 4 

-3.220e+l 
-1.300e-3 

0.000e + 0 
2.900e-4 

2.140e-3 
-1.880e- 1 

0.000e + 0 
-1.904e + 1 

3.738e + 1 
-1.491e + 0 

0.000e+0 
9.753e + 0 

-1.794e+ 1 
9.960e - 1 
1.000e+ 0 

-9.600e - 1 

=      [   1.500e-3     3.5264e+ 1 

2.720e ■ ■ 2     -3.340e - 1   ] 

1   J 

[   -4.366e + 0  ] Se 

The input to G? is the commanded stabilator deflec- 
tion (Sec in radians) and the output is the stabilator 
deflection. Ga is given by 

xa     =      [   -2.000e+l  ]a:0+[  2.000e + 1   ]Sec 

Se     =      [   1.000e + 0  ]i0+[  0.000e + 0  ] 5ec 

The input to Gt is normal acceleration and the out- 
put is the delayed normal acceleration (nZd in g's). 
Gt is given by 

xt     =      [  -4.000e+l   ]ct+[   1.000e+0  ]nZd 

nZd     =      [ 8.000e+l  ] xt + [   -1.000e + 0  ] nz 

The input to Gw (used in simulation only) is a unit 
strength white Gaussian noise (w\) and the output 

10 



is the wind noise (£1). Gw is given by 

xw     =      [   -6.700e + 0  ]% + [   1.870e-3  ] wx 

Ci     =      [   1.000e + 0  ] xw 

The input to Gm (used in simulation only) is a unit 
strength white Gaussian noise (w2) and the output 
is the measurement noise (£2)- Gm is given by 

im     =      [   -1.000e+l   ]a;m+[  4.000e - 4  ] w2 

C2     =      [   1.000e + 0  ]zm+[  4.000e-4  ] w2 
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